

2E8

1E7

# **Online Peptide Fractionation**

### Can we modify the ZipChip-SPE-CE-MS method to elute the peptides off of the SPE bed in multiple fractions?

Particles = 5  $\mu$ m porous silica, C18 **BGE = Acetonitrile/Water/Formic acid (ZipChip Peptides BGE)** Weak mobile phase (WMP) = 1% acetonitrile, 0.1 M ammonium acetate

Sample: • 20 ng/µL HeLa Tryptic digest

### Method:

- ZipChip SPE sample loaded as normal (240 seconds)
- Run manually stopped after the Wash step
- Sequence of Standard ZipChip runs performed with increasing % acetonitrile elution solvents in place of samples

### **Highlights**:

- Successfully eluted different peptides in different fractions
- Total IDs from the fraction runs were ~2x more than running a single ZipChip-SPE run of the same sample

### How to improve:

- Adjust acetonitrile content of fractions to more evenly distribute the peptides
- Include a WMP wash before running each fraction • This will yield sharper peaks for fractions 2+

# Size Exclusion Desalting for Charge Variant Analysis of mAbs

### Instead of solid phase extraction, could we pack the bed with SEC particles and use it for online desalting of Biotherapeutic Proteins

Particles = 5  $\mu$ m porous silica, Diol **BGE = Acetonitrile/Water/Formic acid (ZipChip Peptides BGE)** 

### Sample:

• NIST mAb diluted from stock formulation to 0.25 mg/mL with 1x PBS

### Method:

- Standard ZipChip method with injection volume setting increased to compensate for resistance of packed bed
- Pressure assist on to back flush salt out of SPE bed during each run

### **Highlights**:

- Effective online desalting of mAb
- Well resolved charge variant peaks from a salty sample

### How to improve:

- Use better particles
- Tighter size distribution and smaller pores
- Make some adjustments to the ZipChip method to achieve more reproducible performance of this application



# Exploring the Possibilities for Microchip SPE-CE-MS





### If we swap the C18 particles for more protein-friendly particles, can we use the ZipChip-SPE-CE-MS method for analysis of intact proteins?

Particles = 5  $\mu$ m porous polymeric particles **BGE = Acetonitrile/Water/Formic acid (ZipChip Peptides BGE)** WMP = 1% acetonitrile, 0.1 M ammonium acetate

### Method:

• Standard ZipChip SPE-CE-MS method

### **Highlights:**

- The proteins in the Pierce Intact Protein mix behaved well with this method
- Concentration factor >100x compared to regular ZipChip without tITP focusing
- Concentration factor >20x compared to regular ZipChip with tITP focusing

### How to improve:

- Automate a more thorough rinse of the bed between runs to minimize carryover
- Adjust the solvent compositions to optimize performance for intact proteins

Step 2: Sample in 0.1 M AmAc, up to 3% MeCN, various carriers/additives

# **Online SPE Desalting of mAbs for Bioreactor Monitoring**

## Could we use a version of the Top-down method for simple desalting of mAbs pulled directly from a bioreactor?

Particles = 5  $\mu$ m porous polymeric particles BGE = Acetonitrile/Water/Formic acid (ZipChip Peptides BGE) WMP = 1% acetonitrile, 0.1 M ammonium acetate

Samples:

- NIST mAb diluted from stock formulation with CDCHO
- Each sample was further diluted 10x with ZipChip SPE Diluent
- Concentrations listed were before 10x dilution with diluent

Method:

Standard ZipChip SPE-CE-MS method

**Highlights**:

- Effective desalting and concentration of mAb
- Clean spectra with accurate deconvolution at 10  $\mu$ g/mL in CDCHO

How to improve:

- Automate a more thorough rinse of the bed between runs • Adjust the solvent compositions to optimize performance for intact
- Explore a combined method that measures unretained small molecules injected through the bed on the same device

# **Top Down Proteomics**





The technologies discussed in this poster are the subject of one or more granted/pending patents. www.908devices.com/patents/