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Introduction
Raman spectroscopy has enjoyed substantial growth 

in pharmaceutical applications over the last 20 years. 

Polymorph analysis was an early and unique capability 

that Raman offered in pharmaceutical analysis in 

analytical labs1, along with superb spectral-microscopy 

capability for particle, substrate, and surface analysis2. 

Handheld Raman systems in pharma proliferated 

starting in the late 2010s. These systems were 

configured with purpose-build operating systems for 

excipient and API pharmacopeial identity testing in 

GMP environments,3,4 solid dosage form authentication 

& anti-counterfeit analysis5 and are now the de facto 

standard for high-efficiency GMP raw material identity 

testing. 

Bioprocess monitoring was a very early area of 

interest for spectroscopic platforms. Near-IR and 

mid-IR systems had been investigated for bioprocess 

metabolite monitoring applications as early as the 

late 1990s, (e.g. references 6-8) but the profound 

absorption of water in the IR region severely limits 

the pathlengths usable for absorption measurements 

without excessive detector noise. Raman spectroscopy 

benefits from a comparatively weak water scattering 

cross-section, and so it was unsurprising that Raman 

began to be investigated for this application in the very 

early 2000s as well.9-11 Raman technology also offers 

considerable flexibility in terms of optical sampling 

geometries given the minimal interference of plastics, 

glasses, and minerals as sampling interfaces.

The key focus areas for this early Raman bioprocess 

work were cellular metabolites in a variety of biological 

systems, and this application has continued with rapidly 

expanding interest. Authors have also published on 

the possibility of assessing product quality attributes, 

such as protein post-translational modifications,12-13 

and aggregation14 among others. Citations related to 

“Raman + bioprocess” have exponentially risen according 

to Google Scholar over the last 10 years (Figure 1) and 

appear to be poised to surpass 4000 citations in 2023.

Challenge:
Empirical Calibration Of Bioprocesses

The analysis of Raman data in complex biosystems 

requires computational assistance. A wide variety of 

chemometric/multivariate tools can be employed in 

this endeavor as reviewed by Ryder.15 With respect 

to modeling of critical process parameters and critical 

quality attributes (CPPs and CQAs), overwhelmingly 

partial least-squares (PLS) regression is noted in the 

literature. PLS is one of a very large class of latent 

variable / regularized empirical linear calibration 

methods. The reasons for its apparent domination 

on chemical applications are largely historical and 

commercial, as it has no more favorable performance 
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Figure 1. Google Scholar-reported citations to journal articles, 
patents & proceedings including keywords Raman + bioprocess.
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than other methods.16,17 But all empirical methods 

do enjoy the advantage that little to no detailed 

understanding is necessary of the underlying cell 

culture environment, chemistry and physics of the 

measurement instrument.

But there are several significant challenges in modeling 

bioprocess data using these empirical calibration 

approaches, as enumerated below.

1. Nonstationarity & homoscedasticity:  In 

mathematics and statistics “stationarity” is a term 

implying that each datum (spectrum in this case) 

is drawn from a random distribution with fixed 

distributional properties. The empirical methods 

such as PLS in most commercial software are only 

theoretically accurate and optimized with ‘stationary’ 

data.  This would imply that every bioprocess must 

run the same, with consistent correlations among 

chemical species. It also implies that the measurement 

variance in the instrument is always the same in 

time and channels (homoscedasticity). This is never 

true with Raman (or NIR or MIR absorption), and 

particularly not in bioprocesses when significant 

biomass can contribute to very large fluorescence 

differences between/within bioprocess runs, and 

therefore orders of magnitude difference in shot 

noise.

2. Extreme covariates:  Almost by definition there 

are extreme time-domain correlations between many 

species over the course of a bioprocess. The empirical 

methods that are widely used are designed to leverage 

those empirical time-domain correlations, but these 

are extremely prone to non-specific associations that 

have limited predictive accuracy or generalization.17-18 

3. Exchangeability & cross-validation:  Related 

to the above, cross-validation is often done as a 

quasi-validation evaluation of an empirical model in 

data modeling efforts. For cross-validation results 

to be valid and representative, the data must be 

‘exchangeable’,19 but for the reasons noted with 

respect to extreme covariates, this condition is 

typically grossly violated with bioprocess data.

4. Trial-and-Error:  Most of these empirical methods 

include a bevy of options for variable selection, 

preprocessing treatments, normalization, and 

correction methods. The recommended approach is 

‘try it and see what seems to work’, as there is often 

little theoretical justification to guide the choice of 

one approach over another.

5. Figures of Merit:  Related to the above, the primary 

metric reported in most commercial software is 

“RMSEC/RMSECV/RMSEP”: root-mean-squared-

error-of-[calibration/cross-validation/prediction]. 

Compendial analytical standards usually expect 

estimates of selectivity, linearity, precision, limit 

of detection, and sensitivity, but unfortunately, 

empirical modeling approaches don’t provide direct 

estimates of the central figures of merit.20 Users 

can do experimental work to evaluate these, but it 

is quite challenging and typically requires custom 

programming/analysis.

6. Spectrometer variation: When empirical methods 

are developed, their covariance also captures 

properties and non-idealities of the individual 

spectrometer.21 When spectrometers are exchanged, 

or sources/detectors replaced, frequently the 

multivariate model needs to be corrected for 

relevance on the new spectrometer properties. A 

broad range of mathematical methods are used to 

perform this ‘calibration transfer’.

7. Regulatory overhang:  The black-box nature of 

empirical calibration methods requires extensive 

empirical validation efforts to demonstrate sensitivity, 

selectivity, linearity, and robustness. A few general 

guidelines have been offered in regulator documents 

(e.g., ICH Q14 10.3), but they are not particularly clear-

cut or grounded in the mathematical basis of these 

methods.

Given these challenges, it is little wonder that robust 

Raman method development and deployment has 

been a particularly vexing challenge in bioprocess 

applications.

There have been numerous efforts to overcome several 

of these impediments. Intentionally perturbed and 

designed experiments (e.g. 22, and references there) 

can be used to try to ‘break’ the extreme covariates 

that are intrinsically present and expand the range 
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Figure 2.  High level comparison of traditional multivariate calibration approach versus MAVERICK’s 'de novo' model.

of the empirical data available for modeling.  Several 

groups have reported success building ‘generic’ models 

using PLS with various pre-treatment methods and 

have reported reasonable success for defined platform 

methods,23-26 but often upwards of 25-30 process runs 

were involved in these efforts at very considerable 

expense—several years of process time—and that 

excludes deployment and maintenance activities that 

follow. These literature results are consistent with 

reports from groups in industry reporting at technical 

conferences.

It was our aim to ameliorate challenges with Raman 

implementation for bioprocess monitoring, initially 

for mammalian processes employing CHO and 

HEK293 cell lines which are widely used for protein/

monoclonal antibodies and viral vector manufacturing, 

but with a scalable framework for future development 

opportunities.

A de novo Model
It is difficult to circumvent many of the afore-mentioned 

challenges with purely empirical modeling/calibration. 

Hybrid models are of increasing interest in the biology 

and bioprocess domains.27 To date, these approaches 

have largely combined knowledge of fundamental 

biological mechanisms, chemical engineering knowledge, 

computational fluid dynamics, and other elements, 

along with some empirically measured or observed 

data for increased process understanding. The more 

mechanistic elements of the model constrain the 

empirical optimization in such a way as to reduce the risk 

of overfitting / local minima and guide the overall model 

to an interpretable and robust approximation. The use of 

first principles or building-block information to predict 

complex outcomes is sometimes referred to as de novo 

methods, such as de novo protein structure modeling,28 

and that is the terminology we have adopted to describe 

MAVERICK’s computational framework.

MAVERICK’s de novo model is derived from work 

dating as far back as the 70s on explicit probabilistic 

frameworks for multivariate calibration (MVC) such as 

the early work of Morgan and others.29-31 It is contrasted 

with the usual empirical multivariate calibration 

construct in Figure 2.

The empirical MVC approach estimates a predictor 

b̂  from an approximation of observed spectral data, 

X (X̃), and paired reference data (y), in the presence 

of some reference error, e. The calculation of b̂  itself 

is elementary; the challenges 1-7 noted above largely 

manifest in the approximation of ‘X’ in each domain—

what experiments should be done, on what hardware, 

across which conditions, how should the raw data be 

manipulated/processed prior to calculating b̂ , and how 

does the resultant model perform in truly prospective 

conditions.

The approximation of X is essential to control the risk of 

overfitting with empirical methods, and there are many, 

many, many different possible ‘approximators’ of X (X̃) 

that may be useful in practice. PLS (partial least-squares) 
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Traditional Empirical MVC 
 
𝐲𝐲𝐲𝐲 = 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗 + 𝐞𝐞𝐞𝐞, 𝐗𝐗𝐗𝐗 𝐗 𝐗𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐲𝐲𝐲𝐲 𝐗 𝐗𝑛𝑛𝑛𝑛 
 
 
where 𝐗𝐗𝐗𝐗� is a reduced approximation of X, e.g. via subspace 
methods such as PLS, PCA, and ‘+’ denotes a pseudoinverse.  
 

 MAVERICK De Novo Model 
 
 
 
 
K is a basis set spanning the reference spectra in the formulary  
𝚿𝚿𝚿𝚿 is a multivariate prior represented expected variance-covariance of 

the formulary concentrations 
F is an optimal filter function, specific to each MAVERICK, and its 

measurement error & environmental state at time t 
𝚺𝚺𝚺𝚺 is the estimated error covariance at time t 
E is an environmental function at time t 
𝚲𝚲𝚲𝚲 is an autoregressive-with-innovation function tracking time-

domain behavior of the estimator 
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any empirically observed X or y data. Instead, it uses 
the terms noted in Figure 2—some static and some 
dynamic—to create a ‘best linear predictor’ at time t 

for the system under active measurement. While the 
heart of this model is probabilistic, several of its 
critical terms are directly derivable from first 
principles with sufficient knowledge of the optical 
train, electronics, and multivariate statistics. Since 
these effects are dynamic in a Raman system 
observing a bioprocess, several of the model terms are 
(unsurprisingly) dynamic. 
 
The formulary elements 𝐊𝐊𝐊𝐊,𝚿𝚿𝚿𝚿 represent a ‘master list’ 
of possible chemical/biochemical contributors to the 
observable Raman spectrum and an associated prior 
probability density function, from which concentration 
estimates are produced a posteriori. One might 
wonder how it is possible to cover all possibilities in 
the formulary, but there are a few helpful boundaries. 
While it is very likely that the number of 
chemical/biochemical species in an active bioprocess 
may number in the thousands [33], the limited 
sensitivity of Raman spectroscopy implies that one 
really needs only to consider the major components 
above approximately 0.01 g/L. At these limits in 
mammalian cultures, we have found that a few 
hundred intrinsic species are relevant, along with a 
cross-section of non-biologic additives (e.g. 
surfactants, anti-foaming agents). Deconvolving an 
observed Raman spectrum with that many degrees of 
freedom is generally an ill-posed problem, but using 
the de novo framework the solution is sufficiently self-
conditioned to produce low-variance estimates of 
concentration. 
 
The remaining terms are both device and time 
dependent. F is an optimal filter function derived from 
a multidimensional factory characterization of each 
MAVERICK system and is adapted in real-time for 
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is one of many subspace projection methods, and it is 

particularly widespread owing to its early inclusion in 

several commercial software packages. It is also common 

to also eliminate wavelength ranges or apply other linear 

or nonlinear transformations in the creation of X̃. The 

myriad options available for this ‘approximation’ step of 

modeling are a significant secondary source of overfitting 

as sometimes hundreds or thousands of options are 

evaluated, ravenously consuming generalized degrees of 

freedom.32

In contrast, MAVERICK’s de novo model doesn’t use any 

empirically observed X or y data. Instead, it uses the terms 

noted in Figure 2—some static and some dynamic—to 

create a ‘best linear predictor’ at time t for the system 

under active measurement. While the heart of this model 

is probabilistic, several of its critical terms are directly 

derivable from first principles with sufficient knowledge 

of the optical train, electronics, and multivariate statistics. 

Since these effects are dynamic in a Raman system 

observing a bioprocess, several of the model terms are 

(unsurprisingly) dynamic.

The formulary elements K,Ψ represent a ‘master list’ 

of possible chemical/biochemical contributors to the 

observable Raman spectrum and an associated prior 

probability density function, from which concentration 

estimates are produced a posteriori. One might wonder 

how it is possible to cover all possibilities in the formulary, 

but there are a few helpful boundaries. While it is very 

likely that the number of chemical/biochemical species in 

an active bioprocess may number in the thousands,33 the 

limited sensitivity of Raman spectroscopy implies that one 

really needs only to consider the major components above 

approximately 0.01 g/L. At these limits in mammalian 

cultures, we have found that a few hundred intrinsic 

species are relevant, along with a cross-section of non-

biologic additives (e.g. surfactants, anti-foaming agents). 

Deconvolving an observed Raman spectrum with that many 

degrees of freedom is generally an ill-posed problem, but 

using the de novo framework the solution is sufficiently 

self-conditioned to produce low-variance estimates of 

concentration.

The remaining terms are both device and time 

dependent. F is an optimal filter function derived 

from a multidimensional factory characterization of 

each MAVERICK system and is adapted in real-time 

for changing sample and system conditions. Many 

of the largest sources of error in Raman systems are 

fundamental to the system's optical design and electronics. 

MAVERICK’s internal system model allows it to estimate 

Σt the measurement error covariance in real-time. Related, 

the system model also allows for Et to adapt to, for 

example, changing lighting. temperature, and turbidity 

conditions. Finally, since in a bioprocess the system state at 

time t is related to the state at time t-1, environmental and 

autoregressive components (Λ) are included in the model 

for inertia.

Figures of Merit
Several properties of this estimator have been 

previously discussed, such as closed-form expressions 

for mean-squared error of prediction (MSEP).34

As noted above, one consistent challenge in empirical 

model development is the opacity of the resulting 

model properties. It is quite rare to find publications 

demonstrating bioprocess Raman application citing 

standard analytical figures-of-merit—sensitivity, 

selectivity, LOD for example—for the resulting models, 

because literature definitions are complicated for 

multivariate models. Sensitivity and selectivity factors 

consistent with the IUPAC definitions can be directly 

estimated from the de novo model following the 

processes noted in 34. Lastly, other model diagnostics 

can also be inferred, such as in-plane and out-of-plane 

conformity, analogous to Hoteling or leverage statistics 

and F-ratios35:
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‘‘QQUUIICCKK  CCAALLIIBBRRAATTIIOONN’’  
 
The de novo approach of the MAVERICK system 
relieves a substantial burden from the end user but 
doesn’t make it completely free of all forms of 
‘calibration’. Since MAVERICK systems are designed 
to plug and play across measurement modules, probe 
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changing sample and system conditions. Many of the 
largest sources of error in Raman systems are 
fundamental to the system's optical design and 
electronics. MAVERICK’s internal system model 
allows it to estimate 𝚺𝚺𝚺𝚺𝑡𝑡𝑡𝑡 the measurement error 
covariance in real-time Related, the system model also 
allows for Et to adapt to, for example, changing 
lighting. temperature, and turbidity conditions. 
Finally, since in a bioprocess the system state at time 
t is related to the state at time t-1, environmental and 
autoregressive components (𝚲𝚲𝚲𝚲) are included in the 
model for inertia. 
 
FFIIGGUURREESS  OOFF  MMEERRIITT  
 
Several properties of this estimator have been 
previously discussed, such as closed-form expressions 
for mean-squared error of prediction (MSEP) [Error! 
Bookmark not defined.,34] 
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(The index ‘t’ for B and 𝚺𝚺𝚺𝚺 has been dropped for 
simplicity.) 
 
As noted above, one consistent challenge in empirical 
model development is the opacity of the resulting 
model properties. It is quite rare to find publications 
demonstrating bioprocess Raman application citing 
standard analytical figures-of-merit—sensitivity, 
selectivity, LOD for example—for the resulting 
models, because literature definitions are complicated 
for multivariate models. Sensitivity and selectivity 
factors consistent with the IUPAC definitions can be 
directly estimated from the de novo model following 
the processes noted in 34. Lastly, other model 
diagnostics can also be inferred, such as in-plane and 
out-of-plane conformity, analogous to Hoteling or 
leverage statistics and F-ratios [35]: 
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Figure 3. Example data from MAVERICK’s de novo Model running 
on various CHO (top) & HEK (bottom) processes.

Figure 4. Example of behind-the-scenes figure of merit information from 
the 'de novo' model for forecasted RMSEP (gL-1) for glucose, lactate, 
and model selectivity (gL-1/gL-1) for lactate. Selectivity values close to one 
indicate excellent selectivity against the specified interferent.

Quick Calibration
The de novo approach of the MAVERICK system 

relieves a substantial burden from the end user 

but doesn’t make it completely free of all forms of 

‘calibration’. Since MAVERICK systems are designed 

to plug and play across measurement modules, 

probe adapters and probes, there is one preparatory 

step that is required to confirm quantitative system 

suitability before bioprocess analysis can begin. This is 

a 3-step process, guided on screen by the MAVERICK’s 

software:

1. Immerse probe into “LOW” check solution, press go 

(wait approximately 4 minutes)

2. Immerse probe into “HIGH” check solution, press 

go (wait approximately 4 minutes)

3. Autoclave the probe for immersion in the actual 

bioprocess.

Steps 1+2 check that several properties of the 

MAVERICK + probe are conforming with the  de novo 

model, and a minor scalar correction is made to the de 
novo model outputs for the particular combination of 

MAVERICK measurement model, probe adapter and 

probe. This information also allows for automated & 

audited performance qualification and tracking with 

the serialized/microchipped probe. MAVERICK also 

supports a single point ‘live’ reference which can be 

helpful eliminate any small observed biases that may 

be consistent between a particular offline reference 

analyzer and MAVERICK’s de novo outputs.

Illustratory Data
Figure 3 illustrates example running performance of 

MAVERICK on CHO and HEK293 process using the 

turn-key de novo model, compared to some common off-

line reference analyzers (enzymatic).

Figure 4 illustrates some of the behind-the-scenes 

diagnostic information that is afforded by the de novo 

model. This information was extracted from a CHO 

process running in a laboratory with large windows to 

the outdoors. In the upper figure, the small undulations 

observable in the estimated RMSE (g/L) are precisely as 

expected—the de novo model is tracking fundamental 
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shot noise changes throughout the day/night cycle, 

affecting Σ  ̂ 
t . The same effect is propagating through to 

selectivity for glucose in the lower figure, which plots 

glucose selectivity against the top 20 other cell culture 

media components: as ambient lighting increases the 

de novo model adjusts and regularizes to preserve 

selectivity despite changes in ambient light. Glutathione 

is highlighted in green. While it happens to be the ‘least’ 

glucose-selective species in this bioprocess run, as the 

y-axis indicates, glucose selectivity is still excellent (>0.99).

The proliferation of cellular/proteinaceous material in 

the later stages of the bioprocess process can induce 

moderate to severe autofluorescence, which is well 

known to cause substantial difficulties with empirical 

calibration models. The de novo model’s figures of merit 

reflect this effect, observable as a slow general trend 

upward of the RMSE’s, but since the de novo model is 

tracking and compensating for the increase in shot noise 

from fluorescence in the measurement error model, this 

effect is handled quite seamlessly.

Boundaries and Opportunities
The key advantages of the de novo approach—namely 

transparency and the avoidance of the pitfalls of 

empirically derived models—can also be considered 

its key limitation. As noted above, if optically active 

components of the bioprocess are not represented in the 

formulary, measurement error model, or environmental 

model, the results reported by the de novo model are 

apt to be biased. The degree to which they are biased 

depends heavily on how optically active they are: trace 

metals in the low microgram/liter level will have no 

impact because a) they are optically inactive and b) 

the concentrations are far too low to be observed with 

Raman in solution. In general, only covalently bonded 

chemical species in the 0.01 g/L range and above are 

considered relevant. 

The de novo construct is also unable to support so-called 

‘soft sensors’—virtual parameters that may be inferred 

from empirically observed data, even if there are no 

direct spectral effects (e.g. pH). Without an aetiologic 

spectral effect for formulary inclusion, the de novo model 

cannot be applied. For those interested in soft-sensor 

modeling or extended prediction models, customers may 

choose to take advantage of MAVERICK’s full spectral 

exports, which can be accessed in real-time via OPCUA, 

or as a consolidated data file at the conclusion of a 

measurement session.

There are further opportunities to exploit hybrid 

modeling approaches for Ψ and K. At present a single Ψ 

seems to be adequate for mammalian bioprocesses, but 

we are exploring an adaptive Ψ for even more diverse 

media systems (e.g. non-CHO or HEK293 mammalian, 

avian, insect etc.), or alternatively, dynamic constraints 

on K if it is apparent from the data that particular 

formulary components are absent, e.g., via an L1-type 

regularization.36 It doesn’t escape our notice that 

dynamical systems models such as so-called digital twins 

may also directly interface with the de novo model for 

continuous time-domain updates. 

Summary
There are exciting opportunities to continue to expand 

the reporting capabilities of MAVERICK as we validate 

performance across other analytes and other cell/media 

processes. It also appears that the de novo model’s 

flexibility should improve robustness across scales/

geometries as processes transition from early phase 

process development to pilot-scale and production. For 

numerous examples of MAVERICK’s current validated 

performance in a variety of culture systems, please refer 

to the application notes on the 908 Devices’ website at 

www.908devices.com 
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