

National Institute for **Bioprocessing Research** and Training

Introduction

- Charge variant analysis hyphenated to native Orbitrap mass spectrometry (CVA-MS) has been shown to be a powerful method for monitoring multiple product quality attributes (PQAs) of monoclonal antibodies (mAbs) including N-glycosylation, C-terminal lysine clipping, N-terminal pyroglutamate formation, deamidation, succinimide formation, proline amidation, glycation and low molecular weight species formation, using intact mass analysis [1,2].
- Application of CVA-MS for the characterisation of Cetuximab, a chimeric human-mouse mAb targeting epidermal growth factor receptor is presented. Cetuximab is a complex mAb, with two Nglycosylation sites present at asparagine N⁸⁸ and N²⁹⁹ of each heavy chain, with C-terminal lysine variants also reported. These posttranslational modifications create a diverse and complex range of charge variant isoforms of Cetuximab.
- CVA-MS analysis performed using pH gradient elution with volatile buffers on a 2.1 × 50 mm Thermo Scientific MAbPac[™] SCX-10 RS strong cation exchanger on a Thermo Scientific Vanquish[™] Horizon UHPLC instrument hyphenated to a Thermo Scientific Q-Exactive[™] Plus hybrid quadrupole Orbitrap mass spectrometer with extended mass Biopharma Option capabilities.
- the charge variant profiling of Cetuximab.

Results

1. System Performance:

CVA-MS and ZipChip[®]-MS of Cetuximab revealed comparable separations of charge variants present. Both orthogonal separation mechanisms yielded complex charge variant separations with similar but not the same selectivity. Transfer into the Orbitrap resulted in informative native spectra with charge distributions of +23 to +28 for CVA peaks and +22 to +32 for the ZipChip[®]-MS arising from the mechanisms. Deconvolution separation total chromatogram/electropherogram resulted a complex spectrum containing a high number of spectral features

Comparable separations obtained using Native spectra collected for the main CVA-MS and ZipChip-MS, similar overall method times including re-equilibration

peak present in the CVA chromatogram / ZipChip-MS electropherogram.

Summary & Conclusion

- Both techniques are orthogonal, yet yield highly selective charge variant separations clearly distinguishing 8 peaks in case of CVA-MS and 7 peaks in case of ZipChip-MS. MS spectra obtained by both approaches are of excellent quality and highly similar.
- Both data sets show that Cetuximab charge variant heterogeneity is caused by various degrees of incomplete c-terminal lysine truncation and sialylation which is also confirmed via enzymatic digestion.
- Charge variant peaks are not characteristic for a specific number of acidic and basic modifications but rather for the net charge resulting by their combinations.

Characterization of Cetuximab using pH Gradient Cation Exchange and Microchip Electrophoresis Coupled to Native **Orbitrap Mass Spectrometry**

Florian Fuessl¹, Craig Jakes¹, Sara Carillo¹, Ashley Bell², Erin A. Redman², Ken Cook³, Jonathan Bones^{1,4}

¹ Characterisation and Comparability Laboratory, National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, A94 X099, Ireland ² 908 Devices, 645 Summer St. 201, Boston, MA, 02210, USA

Analysis also performed using the ZipChip[®] microchip electrophoresis separation platform hyphenated to Q-Exactive[™] Plus Orbitrap MS demonstrating excellent comparability with CVA-MS for

Instrumental setups employing CVA-MS and microchip CE-MS

2. Orthogonal Selectivity:

CVA-MS and ZipChip[®]-MS provide orthogonal and directly reversed selectivity elution/migration order. Evidently, charge variant complexity is caused by various degrees of incomplete c-terminal lysine clipping and sialylation of Fab glycans. Several peaks do not only contain a single charge variant species but several which however exhibit the same net surface charge.

Carboxypeptidase B digestion confirmed the basic

species arise from incomplete c-terminal lysine truncation Gal to NGNA

Contributing factors to Cetuximab charge variants

Separation under native conditions e.g. using either CVA-MS or ZipChip[®]-MS, increases the dynamic range of native MS analysis of complex proteins such as mAbs. Provision of comparable, orthogonal data increases confidence of annotated proteoforms based on retention or migration behaviour arising from the presence of acidic or basic modifications on the mAb.

CVA-MS using the Thermo Scientific MAbPac[™] SCX-10 RS and 908 Devices ZipChip[®]-MS using the Native HR separation platform are highly comparable, providing excellent and orthogonal selectivity and high efficiency separation of mAb charge variants under native conditions.

³Thermo Fisher Scientific, Stafford House, 1 Boundary Park, Hemel Hempstead, HP2 7GE, United Kingdom ⁴ School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland

Assignment of charge variant peaks to the charge variant species found. The red star represents the main species. Modifications impacting net charge are incomplete cterminal lysine truncation and sialylation. White numbers in black circles represent the number of different combinations of these modifications found per peak resulting in the

Confident annotation of 26 soforms across leconvoluted spectra lentification was based on etention time information glycopeptide data Relative quantification feasible based on the MS ignal intensities observed The isoform. each ottom table shows an overview over all isoforms annotated across both CVA-MS and ZipChip runs.

3. Proteoform annotation and relative quantification

Annotation was supported by peptide mapping and utilization of glycopeptide data using the MoFi software [3]. Glycoform assignment was hence probability based and expected degrees of c-terminal lysine and sialylation were deduced from retention/migration times.

References

- F. Fuessl *et al.* Anal. Chem. 2018, *90*, 4669-4676.
- 2. F. Fuessl *et al.* mAbs, 2019, *11*, 116-128.
- W. Skala *et al.* Anal. Chem. 2018, *90*, 5728-5736.