Microfluidic Capillary Electrophoresis - Native Orbitrap Mass Spectrometry to unravel top selling monoclonal antibodies heterogeneity

Sara Carillo¹, Florian Füssl¹, Craig Jakes¹, Ashley Bell², Erin A. Redman², Jonathan Bones^{1,3}

¹Characterisation and Comparability Laboratory, NIBRT. Foster Avenue, Mount Merrion, Blackrock, co. Dublin. Ireland ²908 Devices Inc., Boston, MA. ³School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4

National Institute for Bioprocessing Research and Training

Background

The biopharmaceutical industry continues to develop mAb-based biotherapeutics for several application and diseases treatment. The complexity of these molecules creates a considerable challenge for the analytical technologies used to monitor the product quality attributes (PQAs) that need to be measured and controlled to guarantee safety and efficacy [1]. According to ICH guidelines, one of the features that needs to be monitored during biopharmaceutical development, and during approval and batch release post authorization, is the charge variant profile of a biotherapeutic. Standardized methods include the use of capillary electrophoresis using either zone or isoelectric focusing separation modes or the use of ion exchange liquid chromatography with UV detection (IEX-UV) [2]. The recent development of native mass spectrometry has facilitated the use of such separation techniques with Orbitrap mass spectrometry detection to obtain on-line MS identification of the charge variant proteoforms [3,4]. Native MS offers several advantages that include fast analysis and minimal sample preparation when combined with an upfront analytical separation, thus avoiding artificially-induced modification on the analyte.

We tested the performance of ZipChip[™] platform hyphenated with a QExactive[™] Plus Hybrid Quadrupole Orbitrap mass spectrometer using the extended mass range Biopharma option available on this instrument to perform native MS experiments on the charge variants separated using microchip electrophoresis. The drug products tested

in this work are rituximab, bevacizumab and trastuzumab; microfluidic CE-ESI analysis showed improved in-depth characterization of the biotherapeutics, identifying with high mass accuracy up to 52 proteoforms and with fast analysis requiring minimal optimization of the experimental conditions and minimal sample preparation.

Results

Rituximab

Drimany convonce modifications	N Glucon	Experimental	Avg Delta mass	Rel abundance	

Trastuzumab

N-Glycar

Primary sequence modification

Avg Delta mass Rel abundance

Theoretical mass

Rovac	izuma	h
DEval	Izuma	N

Primary sequence modifications	N-Glycan	Experimental Average	Theoretical mass	Avg Delta mass (ppm)	Rel abundance (%)	
1x C-term lysine loss	2xA2G0F	149323.29	149325.73	16.33	1.80	
1x C-term lysine loss	1xA2G0F,1xA2G1F	149485.27	149487.87	17.42	0.71	
1x C-term lysine loss	1xA2G0F,1xA2G2F	149646.73	149650.01	21.92	0.22	
1x C-term lysine loss	1xA1G0F,1xA2G0F	149120.55	149122.54	13.37	0.15	
1x C-term lysine loss	1xA2G2F,1xM5	149420.20	149421.77	10.49	0.03	
1x C-term lysine loss	1xA2G0,1xA2G0F	149182.38	149179.59	18.67	0.12	
1x C-term lysine loss	1xA2G0F	147876.70	147880.40	25.00	0.03	
2x C-term lysine loss	2xA2G0F	149195.23	149197.56	15.62	57.36	
2x C-term lysine loss	1xA2G0F,1xA2G1F	149357.63	149359.70	13.89	19.78	
2x C-term lysine loss	1xA2G0F,1xA2G2F	149519.02	149521.84	18.89	4.64	
2x C-term lysine loss	1xA1G0F,1xA2G0F	148991.03	148994.36	22.38	3.68	
2x C-term lysine loss	1xA2G0F	147750.45	147752.22	11.99	3.30	
2x C-term lysine loss	1xA2G0,1xA2G0F	149050.11	149051.42	8.79	0.92	
2x C-term lysine loss, 1 Deamidation	2xA2G0F	149197.31	149198.57	8.43	4.27	
2x C-term lysine loss, 1 Deamidation	1xA2G0F,1xA2G1F	149358.70	149360.71	13.44	1.82	
2x C-term lysine loss, 1 Deamidation	2xA2G1F	149520.56	149522.85	15.30	0.59	
2x C-term lysine loss, 1 Deamidation	1xA2G0F	147751.61	147753.23	10.93	0.36	
2x C-term lysine loss, 1 Deamidation	1xA1G0F,1xA2G0F	148992.10	148995.37	21.95	0.24	

		Average		(ppm)	(%)
4x N-term PyroGlu	1xA2G2F,1xA2G1F	147818.09	147818.11	0.14	0.01
4x N-term PyroGlu	2xA2G1F	147654.165	147655.96	12.16	0.05
4x N-term PyroGlu	2xA2G0F	147331.04	147331.68	4.34	0.07
4x N-term PyroGlu	1xA2G0F,1xA2G1F	147490.78	147493.82	20.61	0.06
4x N-term PyroGlu, 1x C-term lysine loss	1xA2G0F,1xA2G1F	147363.849	147365.65	12.22	1.50
4x N-term PyroGlu, 1x C-term lysine loss	2xA2G0F	147201.9792	147203.51	10.40	1.10
4x N-term PyroGlu, 1x C-term lysine loss	1xA2G0F,1xA2G2F	147526.25	147527.79	10.44	1.04
4x N-term PyroGlu, 1x C-term lysine loss	1xA2G1F,1xA2G2F	147688.1146	147689.94	12.36	0.36
4x N-term PyroGlu, 1x C-term lysine loss	2xA2G2F	147850.25	147852.09	12.44	0.06
3x N-term PyroGlu, 2x C-term lysine loss	1xA2G0F,1xA2G1F	147251.5677	147254.51	19.98	1.61
3x N-term PyroGlu, 2x C-term lysine loss	2xA2G1F	147413.2396	147416.65	23.13	1.24
3x N-term PyroGlu, 2x C-term lysine loss	2xA2G0F	147089.5104	147092.37	19.44	1.06
3x N-term PyroGlu, 2x C-term lysine loss	1xA2G1F,1xA2G2F	147574.474	147578.79	29.25	0.50
3x N-term PyroGlu, 2x C-term lysine loss	1xA2G2F.1xA2G2F	147736.8438	147740.93	27.66	0.13
3x N-term PyroGlu, 2x C-term lysine loss	1xA2G0F.1xA2G0	146944.099	146945.85	11.92	0.06
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G0F.1xA2G1F	147236.3021	147237.48	8.00	25.14
4x N-term PyroGlu, 2x C-term lysine loss	2xA2G1F	147398.3698	147399.62	8.48	22.71
4x N-term PyroGlu, 2x C-term lysine loss	2xA2G0F	147075.375	147075.34	0.24	14.94
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G1E.1xA2G2E	147559,9948	147561.76	11.96	10.35
4x N-term PyroGlu 2x C-term lysine loss	2xA2G2F	147721 4635	147723 9	16.49	2 72
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G0 1xA2G0F	146930 349	146929 19	7 89	0.81
4x N-term PyroGlu, 2x C-term lysine loss	2xM5	146616 4063	146618 85	16.67	0.27
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G1F 1xA2S1G1F	147851 5521	147853 02	9.93	1.95
Ax N-term PyroGlu, 2x C-term lysine loss	1x 42G1F 1x 42S1F	147689 7656	147690 87	7 48	1.55
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G2E 1xA2S1G1E	148013 7656	148015 16	9.42	0.93
4x N-term PyroGlu, 2x C-term lysine loss	1χΔ1G1F 1χΔ2S1F	147481 474	147487 67	42 01	0.55
Ax N-term PyroGlu, 2x C-term lysine loss	1xA1G0F 1xA2S1F	1/732/ 359/	1/7325 53	7 95	0.10
Ax N-term PyroGlu, 2x C-term lysine loss	1×A2G0F 1×A2S1F	1/7529 3/38	1/7528 72	1.33	0.10
x N-term PyroGlu, 2x C-term lysine loss 1x	1772001,1772311	147323.3430	147520.72	7.25	0.10
Deamidation	1xA2G0F,1xA2G1F	147237.2031	147238.49	8.74	1.68
x N-term PyroGlu, 2x C-term lysine loss, 1x Deamidation	2xA2G1F	147398.9427	147400.63	11.45	1.54
x N-term PyroGlu, 2x C-term lysine loss, 1x Deamidation	2xA2G0F	147074.5729	147076.35	12.08	0.93
x N-term PyroGlu, 2x C-term lysine loss, 1x Deamidation	1xA2G1F,1xA2G2F	147561.3854	147562.77	9.38	0.67
x N-term PyroGlu, 2x C-term lysine loss, 1x Deamidation	1xA2G0,1xA2G0F	146931.4271	146930.2	8.35	0.05
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G1F,1xA2S2F	148142.1719	148144.27	14.16	1.53
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G2F,1xA2S2F	148304.9531	148306.41	9.82	1.06
4x N-term PyroGlu, 2x C-term lysine loss	1xA2G0F,1xA2S2F	147980.3438	147982.12	12.00	0.43
x N-term PyroGlu, 2x C-term lysine loss, 2x Deamidation	1xA2G0F,1xA2G1F	147236.6615	147239.5	19.28	0.57
x N-term PyroGlu, 2x C-term lysine loss, 2x Deamidation	2xA2G1F	147398.7552	147401.64	19.57	0.54
x N-term PyroGlu, 2x C-term lysine loss, 2x Deamidation	2xA2G0F	147074.0938	147077.36	22.21	0.30
4x N-term PyroGlu, 2x C-term lysine loss	1xA2S1G1F,1xA2S2F	148596.3906	148597.68	8.68	0.17
4x N-term PyroGlu, 2x C-term lysine loss	2xA2S2F	148886.7552	148888.94	14.67	0.24
Fragment	1xA2G0F,1xA2G1F	100076.35	100075.52	8.27	
Fragment	2xA2G1E	100238 2318	100237 58	6.49	

	Average		(ppin)	(70)	
None	2xA2G0F	148316.02	148312.90	21.01	0.02
1x C-term lysine loss	2xA2G0F	148184.95	148184.73	1.47	0.67
1x C-term lysine loss	1xA2G0F,1xA2G1F	148346.44	148346.87	2.92	0.56
1x C-term lysine loss	2xA2G1F	148506.24	148509.01	18.62	0.31
1x C-term lysine loss	2xM5	147725.38	147728.24	19.39	0.31
1x C-term lysine loss	1xA2G1F,1xA2G2F	148668.45	148671.15	18.17	0.09
1x C-term lysine loss	1xA1G0F,1xA2G0	147834.33	147835.39	7.18	0.03
1x C-term lysine loss	2xA2G0	147888.26	147892.44	28.28	0.12
1x C-term lysine loss	1xA1G1,1xA2G0F	147991.89	147997.53	38.10	0.03
1x C-term lysine loss	1xA2G2F,1xM5	148279.81	148280.77	6.46	0.02
1x C-term lysine loss	1xA2G0F,1xA2G0	148039.22	148038.59	4.25	0.33
2x C-term lysine loss, 1x Succinimide	1xA2G0F,1xA2G1F	148199.72	148201.67	13.17	0.40
2x C-term lysine loss, 1x Succinimide	2xA2G0F	148038.91	148039.53	4.21	0.35
2x C-term lysine loss, 1x Succinimide	1xA2G0F,1xA2G2F	148364.41	148363.81	4.07	0.18
2x C-term lysine loss, 1x Succinimide	1xA2G0,1xA2G0F	147889.60	147893.39	25.62	0.05
2x C-term lysine loss, 1x Succinimide	1xA2G1F,1xA2G2F	148520.28	148525.95	38.17	0.15
2x C-term lysine loss, 1x Succinimide	1xA2G1,1xA2G2F	148374.45	148379.81	36.10	0.03
2x C-term lysine loss	2xA2G0F	148055.76	148056.56	5.44	21.38
2x C-term lysine loss	1xA2G0F,1xA2G1F	148217.02	148218.70	11.33	24.01
2x C-term lysine loss	2xA2G1F	148378.74	148380.84	14.16	15.13
2x C-term lysine loss	1xA2G1F,1xA2G2F	148540.23	148542.98	18.48	5.56
2x C-term lysine loss	1xA2G0,1xA2G0F	147909.47	147910.42	6.43	4.06
2x C-term lysine loss	2xA2G2F	148702.34	148705.12	18.70	1.31
2x C-term lysine loss	1xA2G1F,1xA2S1G0F	148670.32	148672.09	11.89	1.03
2x C-term lysine loss	1xA2G1F,1xA2S1G1F	148832.09	148834.24	14.46	0.99
2x C-term lysine loss	1xA1G1F,1xA2S1G0F	148467.88	148468.89	6.80	0.41
2x C-term lysine loss	1xA2G2F,1xA2S1G1F	148993.44	148996.38	19.71	0.38
2x C-term lysine loss	1xA2G0F,1xA2S1G0F	148511.17	148509.95	8.23	0.35
2x C-term lysine loss	1xA1G0F,1xA2S1G0F	148306.45	148306.75	2.00	0.56
2x C-term lysine loss	1xA1G0,1xA2S1G0F	148159.23	148160.60	9.22	0.08
2x C-term lysine loss, 1x Deamidation	1xA2G0F,1xA2G1F	148217.74	148219.71	13.29	6.44
2x C-term lysine loss, 1x Deamidation	2xA2G0F	148056.78	148057.57	5.33	4.76
2x C-term lysine loss, 1x Deamidation	2xA2G1F	148379.34	148381.85	16.89	4.53
2x C-term lysine loss, 1x Deamidation	1xA2G1F,1xA2G2F	148541.58	148543.99	16.24	1.82
2x C-term lysine loss, 1x Deamidation	1xA2G0,1xA2G0F	147910.81	147911.43	4.21	0.82
2x C-term lysine loss, 1x Deamidation	2xA2G2F	148702.74	148706.13	22.80	0.43
2x C-term lysine loss, 1x Deamidation	1xA2G1F,1xA2S1G0F	148670.81	148673.10	15.39	0.19
2x C-term lysine loss, 1x Deamidation	1xA2G1F,1xA2S1G1F	148832.21	148835.25	20.44	0.18
2x C-term lysine loss, 1x Deamidation	1xA2G0F,1xA2S1G0F	148511.91	148510.96	6.37	0.06
2x C-term lysine loss, 1x Deamidation	1xA1G0F,1xA2S1G0F	148307.65	148307.76	0.77	0.07
2x C-term lysine loss, 1x Deamidation	1xA2G2F,1xA2S1G1F	148993.91	148997.39	23.35	0.07
2x C-term lysine loss, 1x Deamidation	1xA1G0F,1xA2S1G1F	148464.70	148469.90	35.00	0.03
2x C-term lysine loss, 1x Deamidation	1xA1G1F,1xA2S1G1F	148627.22	148632.05	32.50	0.32
2x C-term lysine loss, 2x Deamidation	1xA2G0F,1xA2G1F	148218.47	148220.72	15.19	0.44
2x C-term lysine loss, 2x Deamidation	2xA2G1F	148380.24	148382.86	17.62	0.36
2x C-term lysine loss, 2x Deamidation	2xA2G0F	148057.54	148058.58	7.01	0.29
2x C-term lysine loss, 2x Deamidation	1xA2G1F,1xA2G2F	148541.77	148545.00	21.74	0.14
2x C-term lysine loss, 2x Deamidation	2xA2G2F	148706.16	148707.14	6.62	0.01
2x C-term lysine loss, 2x Deamidation	1xA2G0,1xA2G0F	147910.07	147912.44	16.04	0.05
2x C-term lysine loss, 3x Deamidation	2xA2G0F	148057.61	148059.59	13.38	0.02
2x C-term lysine loss, 3x Deamidation	1xA2G0F,1xA2G1F	148218.14	148221.73	24.22	0.03
2x C-term lysine loss, 3x Deamidation	2xA2G1F	148380.89	148383.87	20.08	0.02

Materials & Methods

100 ug of mAb were buffer-exchanged with ZipChip Native Diluent in 0.5 mL spin-filters with 10KDa MWCO and concentrated to 0.5 mg/mL.

CE separation was carried on a ZipChip[™] platform using an HRN microchip and native BGE. CE separation was carried for 15 minutes using an injection of 2 nL and a field strength of 500 V. The system was hyphenated with a QExactive Plus hybrid quadrupole Orbitrap mass spectrometer with extended mass Biopharma Option (Thermo Scientific).

MS Settings		Deconvolut	ion settings
HMR mode	On	Algorithm	Respect™
Resolution	35,000	Output Mass range	146,000-150,000
Microscan	5	Charge state rage	20-50
Max Injection time	20 ms	Min. Adjacent charge states	5
In-source CID	150	Deconvolution mass tolerand	ce 15 ppm
S-lens	200	Input mass range	4000-8000 m/z

The charge variant analysis of 3 blockbuster biotherapeutics was performed on a microfluidic CE-ESI platform consisting of a ZipChip device, equipped with an HRN microchip, hyphenated with a QExactive Plus Orbitrap mass spectrometer. For rituximab drug product 45 proteoforms were identified, including acidic variants with up to 4 sialic acids and a mAb fragment constituted by a complete Fc region and only one Fab arm. This fragmentation has already been reported in the literature and could be caused by hydrolysis, β -elimination or by specific enzymatic cleavage of Cathepsin L, a protein often found as host cell protein in biotherapeutics formulations. Trastuzumab drug product revealed a major sample complexity, with 52 proteoforms identified and several isobaric variants having deamidation at different sites, thus migrating in different ways in the electropherogram. The same is visible in bevacizumab drug product, where 18 proteoforms were identified, but more isobaric variants are present, like the two deamidated species at rt 9.40 and 9.48.

Fragment	2xA2G0F	99912.57	99913.46	8.92	
Fragment	1xA2G1F,1xA2G2F	100402.03	100399.63	23.90	

* Only one N-glycan pair is indicated where it is not possible to determine the exact distribution of N-glycans between the two Fc regions. As an example 2xA2G1F could potentially correspond to 1xA2G0F, 1xA2G2F.

Conclusions

Biopharmaceuticals characterisation is becoming more demanding in terms of in-depth of the analysis, robustness and accuracy, possibly together with minimal sample preparation and fast analysis. Data obtained showed improved sensitivity with respect to standard native analysis performed by SEC-MS or direct infusion, analyzing amount of sample as low as 1ng. Robustness of the platform was proved by reproducible separation and quantitation, estimated through the deconvoluted peaks relative abundances in triplicate. As well, access to extended mass range instrument, allowed the acquisition of native spectra without sacrificing resolution; data analysis showed the determination of protein ID with high mass accuracy (Δ values rarely exceeding 30 ppm). All the data presented here-in demonstrate the applicability of microfluidic CE-ESI analysis for biopharmaceuticals characterisation in crucial stages of biomanufacturing like early stage development and clones evaluation as well as biosimilars comparability.

308 Services ThermoFisher SCIENTIFIC

References

[1] Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S., *J Sep Sci.*, 2018; 41(1): 125-144.
[2]Sosic Z, Houde D Blum A, Carlage T, Lyubarskaya Y, *Electrophoresis* 2008; 29(21): 4368-4376.
[3]Redman EA, Mellors JS, Starkey JA, Ramsey JM. *Anal Chem*. 2016; 88(4): 2220-2226.
[4]Füssl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. *Anal Chem*. 2018; 90(7): 4669-4676.